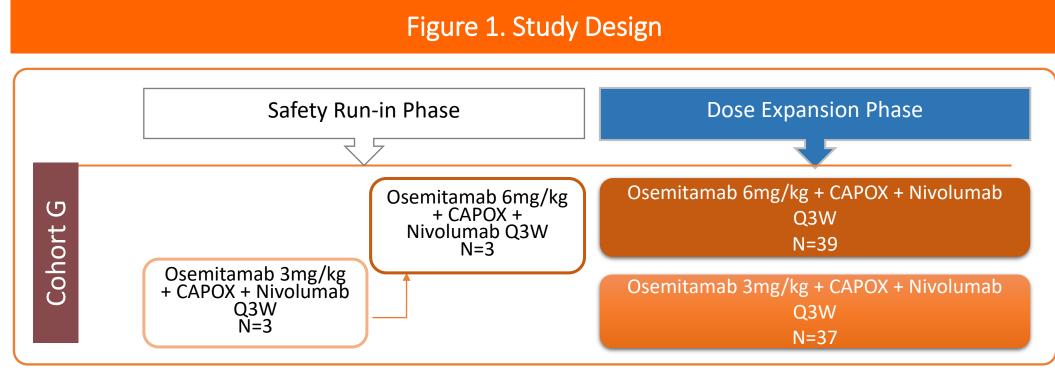
1419P Osemitamab (TST001) plus Nivolumab and CAPOX as the First-line Therapy for the Patients with Advanced G/GEJ Cancer (TranStar102)


Lin Shen¹, Zengqing Guo², Jingdong Zhang³, Weijian Guo⁴, Meili Sun⁵, Nong Xu⁶, Chuan Qi⁷, Xuelian Zhu⁷, Lijuan Zhang⁷, Li Xu⁸, Caroline Germa⁸. 1. Peking University Cancer Hospital; 2. Fujian Cancer Hospital; 3. Liaoning Cancer Hospital; 4. Fudan University Shanghai Cancer Center; 5. Jinan Central Hospital Affiliated to Shandong University ; 6. The First Affiliated Hospital of Medical School of Zhejiang University; 7. Suzhou Transcenta Therapeutics Co, Ltd. 8. Transcenta Therapeutics, Inc.

BACKGROUND

- Osemitamab, a humanized monoclonal antibody with improved affinity to claudin (CLDN) 18.2 and enhanced antibody-dependent cell-mediated cytotoxicity, has demonstrated great synergistic effect with anti-PD-1 antibody and chemotherapy in pre-clinical research.
- As checkpoint inhibitor plus chemotherapy is the current standard of care (SOC), we explored the combination of CLDN18.2 antibody osemitamab with this SOC in CLDN18.2 positive 1L G/GEJ (gastric/gastroesophageal junction) cancer.

METHODS

- Cohort G from Transtar102 study (NCT04495296) was designed to explore the safety and efficacy of osemitamab plus CAPOX and nivolumab as first-line treatment for advanced G/GEJ cancer (Figure 1), with a safety lead-in and expansion phase. Patients were alternately allocated to 3 or 6mg/kg at expansion phase. Eligible patients include HER2 negative or unknown, unresectable locally advanced or metastatic G/GEJ cancer, regardless of CLDN18.2 or PD-L1 expression. CLDN18.2 and PD-L1 status were analyzed retrospectively using IHC 14G11 LDT assay and PD-L1 IHC 28-8 pharmDx at a central laboratory. The CLDN18.2 expression was divided into three subgroups: H/M (high/medium), L (low) and R (rest) according to the tumor cells showing membranous CLDN18.2 staining per CLDN18.2 IHC 14G11 LDT assay.
- Comparisons were made across the subsets by CLDN18.2 expression level as an alternative approach to estimate the possible effect size due to lack of "real" control.

RESULTS

- As of Jul 17, 2024, a total of 82 patients had been dosed with TST001 plus CAPOX and nivolumab (40 at 3 mg/kg, 42 at 6mg/kg) with median follow-up 15.2 months. Of the 82 patients, 32 were with CLDN18.2 H/M expression, 22 with L expression, and 28 were in the Rest subgroup with CLDN18.2 expression lower than L (n=7), negative (n=19) or unknown (n=2). 66 patients had PD-L1 test results, and 56 were CPS< 5.
- All patients experienced treatment-related adverse events (TRAE). The most common TRAEs were hypoalbuminaemia, nausea and vomiting, most of them were of CTC AE grade 1 or 2 and manageable. The safety profile was similar to TST001 in combination with CAPOX which was presented previously (*J Clin Oncol 41, 2023 , suppl 16; abstr* 4046). The administration of the backbone therapy wasn't compromised by the addition of osemitamab (data not shown).

Table 1	. Demographi	c and Baseline	Character <u>isti</u>	CS	
		CLDN18.2 H/M (N=32)	CLDN18.2 L (N=22)	CLDN18.2 R (N=28)	Overall (N=82)
Age at Consent (years)	Median	56.5	62.5	60	58.5
	Min, Max	27, 72	41, 76	45, 71	27, 76
Sex, n (%)	Male	21 (65.6)	17 (77.3)	23 (82.1)	61 (74.4)
ECOG Status, n (%)	0	4 (12.5)	6 (27.3)	7 (25.0)	17 (20.7)
	1	28 (87.5)	16 (72.7)	21 (75.0)	65 (79.3)
Cancer Type, n (%)	Gastric Cancer	31 (96.9)	18 (81.8)	24 (85.7)	73 (89.0)
	GEJ Cancer	1 (3.1)	4 (18.2)	4 (14.3)	9 (11.0)
Gastrectomy, n (%)	None	25 (78.1)	16 (72.7)	13 (46.4)	54 (65.9)
	Partial or total	5 (15.6)	6 (27.3)	14 (50.0)	25 (30.5)
	Other	2 (6.3)	0	1 (3.6)	3 (3.7)
PD-L1 CPS-Central Result, n (%)	< 5	22 (68.8)	16 (72.7)	18 (64.3)	56 (68.3)
	≥5	4 (12.5)	3 (13.6)	3 (10.7)	10 (12.2)
	Missing	6 (18.8)	3 (13.6)	7 (25.0)	16 (19.5)
Metastasis status at study entry, n (%)	MO	1 (3.1)	1 (4.5)	0	2 (2.4)
	M1	31 (96.9)	21 (95.5)	28 (100)	80 (97.6)
No. of Metastasis sites, n (%)	0-2	22 (68.8)	16 (72.7)	19 (67.9)	57 (69.5)
	≥3	9 (28.1)	5 (22.7)	9 (32.1)	23 (28.0)
	Missing	1 (3.1)	1 (4.5)	0	2 (2.4)
Sites of Metastasis, n (%)	Hepatic	10 (31.3)	9 (40.9)	18 (64.3)	37 (45.1)
	Peritoneum	12 (37.5)	3 (13.6)	3 (10.7)	18 (22.0)
	Pulmonary	2 (6.3)	5 (22.7)	7 (25.0)	14 (17.1)
	,	, ,		, , , , , , , , , , , , , , , , , , ,	

Table 2.	A du como o	Evente		Anal	voia Cat
	Anverse	Evenisi	n Saleiv		

	TEAE, incidence ≥20	%, regardless of grade	TRAE				
By Preferred Term	All Grade	Grade≥3	All Grade	Grade≥3			
Subjects with at least one adverse event	82 (100)	56 (68.3)	82 (100)	44 (53.7)			
Nausea	56 (68.3)	3 (3.7)	55 (67.1)	3 (3.7)			
Vomiting	49 (59.8)	2 (2.4)	49 (59.8)	2 (2.4)			
Constipation	18 (22.0)	0	5 (6.1)	0			
Diarrhoea	20 (24.4)	4 (4.9)	13 (15.9)	2 (2.4)			
Hypoalbuminaemia/Hypoproteinaemi a	65 (79.3)	0	57 (69.5)	0			
Hyponatraemia	38 (46.3)	3 (3.7)	26 (31.7)	2 (2.4)			
Decreased appetite	38 (46.3)	4 (4.9)	37 (45.1)	4 (4.9)			
Hypokalaemia	28 (34.1)	11 (13.4)	19 (23.2)	8 (9.8)			
Hypocalcaemia	17 (20.7)	1 (1.2)	7 (8.5)	0			
Hyperglycaemia	17 (20.7)	0	7 (8.5)	0			
Aspartate aminotransferase increased	51 (62.2)	4 (4.9)	38 (46.3)	3 (3.7)			
Neutrophil count decreased	52 (63.4)	16 (19.5)	36 (43.9)	10 (12.2)			
Platelet count decreased	49 (59.8)	10 (12.2)	38 (46.3)	8 (9.8)			
White blood cell count decreased	40 (48.8)	3 (3.7)	27 (32.9)	1 (1.2)			
Weight decreased	41 (50.0)	3 (3.7)	34 (41.5)	2 (2.4)			
Alanine aminotransferase increased	31 (37.8)	3 (3.7)	19 (23.2)	3 (3.7)			
Lipase increased	25 (30.5)	5 (6.1)	21 (25.6)	4 (4.9)			
Lymphocyte count decreased	17 (20.7)	5 (6.1)	13 (15.9)	3 (3.7)			
Amylase increased	19 (23.2)	1 (1.2)	16 (19.5)	1 (1.2)			
Anaemia	57 (69.5)	8 (9.8)	35 (42.7)	4 (4.9)			
Proteinuria	22 (26.8)	0	17 (20.7)	0			

• As of the cut-off date, the median OS was not reached because of the limited number of events, the 12-month survival rate for the overall population (82 patients) in this cohort was 73.8% (95% CI: 62.0-82.4%).

• Updated data indicated that the combination of osemitamab plus nivolumab and CAPOX as first-line treatment for patients with G/GEJ cancer was safe and well tolerated. • The addition of osemitamab to CAPOX and nivolumab as first-line treatment for patients with advanced or metastatic G/GEJ cancer leads to encouraging and durable anti-tumor activities, especially for patients with high/medium CLDN18.2 expression regardless of PD-L1 CPS when cross comparing to historical controls.

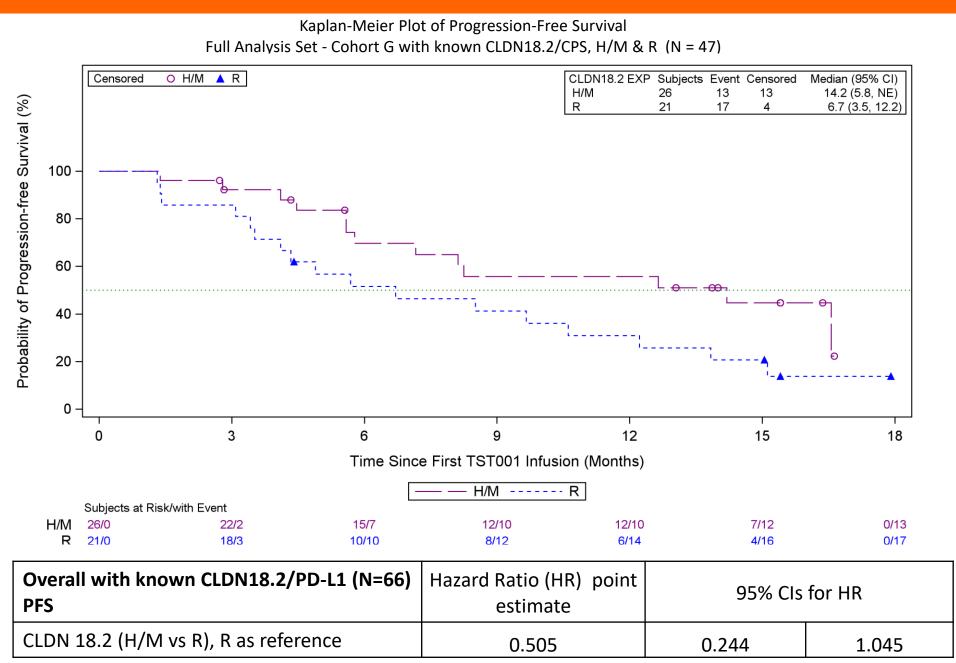

• Here we reported the exploratory analysis of the subgroup efficacy of patients with H/M CLDN18.2 expression group in overall (n=32) and in subgroup with PD-L1 CPS<5 (n=22). (Table 3).

Table 3. Tumor Response and Durable Anti-tumor Effect									
	Overall [#]			Overall with/ known CLDN18.2 / PD-L1			PD-L1 CPS<5		
	H/M N=32	L N=22	R N=28	H/M N=26	L N=19	R N=21	H/M N=22	L N=16	R N=18
* med)	58.1%	52.4%	55.6%	68.0%	61.1%	50.0%	71.4%	60.0%	47.1%
=S	12.6 m (95% CI: 5.8-16.6)	7.1 m (95% CI: 4.2-8.8)	8.5 m (95% CI: 4.3-12.2)	14.2m (95% CI: 5.8-NE)	8.5 m (95% Cl: 4.2-NE)	6.7m (95% CI: 3.5-12.2)	16.6 m (95% CI: 5.6-NE)	7.1 m (95% CI: 4.2-NE)	5.7 m (95% CI: 3.5-13.8)

*In patients with measurable disease at baseline; # including patients with unknown CLDN18.2 or PD-L1

 Note: The Rest ("control arm") all patients outperformed significantly low CLDN18.2 expression subgroup in overall probably because more PDL1 unknown patients (25%) from "Rest".

Figure 2. Progression-Free Survival of Cohort G for the Patients, by CLDN18.2

E-mail address:linshenpku@163.com The study sponsored by Suzhou Transcenta Therapeutics Co, Ltd. The first author is the scientific advisor of Suzhou Transcenta Therapeutics Co, Ltd.